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Abstract 

In Friction Stir Welding (FSW) processes, force control can be used to achieve good welding 

quality. This paper presents the systematic design and implementation of FSW force controllers. 

The axial and path forces are modeled as nonlinear functions of the FSW process parameters (i.e., 

plunge depth, tool traverse rate, and tool rotation speed). Equipment models, which include 

communication delays, are constructed to relate the commanded and measured actuator signals. 

Based on the dynamic process and equipment models, nonlinear feedback controllers for the axial 
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and path forces are designed using the Polynomial Pole Placement technique. The controllers are 

implemented in a Smith Predictor–Corrector structure to compensate for the inherent equipment 

communication delays and the controller parameters are tuned to achieve the best closed loop 

response possible given equipment limitations. In the axial force controller implementation, a 

constant axial force is maintained, even when gaps are encountered during the welding process. In 

the path force controller implementation, a constant path force is maintained, even in the presence 

of gaps, and wormhole generation during the welding process is eliminated by regulating the path 

force. 

 

Key Words: Friction Stir Welding, Feedback Control, Polynomial Pole Placement, Smith 

Predictor–Corrector 

 

Nomenclature 

C – Controller transfer function 

d – Plunge depth (mm) 

dc – Commanded plunge depth (mm) 

E – Error (kN) 

f – Frequency (Hz) 

fd – Frequency of plunge depth equipment model validation experiments (Hz) 

fs – Sampling frequency (Hz) 

fω – Frequency of tool rotation speed equipment model validation experiments (Hz) 

Fa – Axial force (kN) 

Fp – Path force (kN) 
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Fr – Reference force (kN) 

g – Gap distance (mm) 

G – Plant transfer function 

Ga – Axial force control system gain margin (dB) 

Gm – Gain margin (dB) 

Gp – Path force control system gain margin (dB) 

H – Open loop transfer function 

Hcl – Closed loop transfer function 

i – Imaginary number 1−  

n – number of equipment delay periods 

Pa – Axial force control system phase margin (degree) 

Pm – Phase margin (degree) 

Pp – Path force control system phase margin (degree) 

S – Sensitivity transfer function 

T – Sampling period (sec) 

Td – Average delay time (sec) 

U – Control signal (mm or rpm) 

v – Tool traverse rate (mm/s) 

Yf – Filtered general force (kN) 

Ym – Measured general force (kN) 

z – Forward shift operator 

ω – Tool rotation speed (rpm) 

ωc – Commanded tool rotation speed (rpm) 
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Introduction 

Friction Stir Welding (FSW) is a new solid state welding technology that has been used 

successfully in many joining applications. In FSW processes, a rotating non–consumable tool, 

consisting of a pin and shoulder, plunges into the part such that both the pin and shoulder are in 

contact with the part. The tool rotation induces gross material plastic deformation due to an 

elevated temperature field. The tool travels along, or across, the intersection of two parts after 

dwelling for a specified amount of time, and joins the parts as the tool leaves the processing zone. 

This technique has advantages in that it can join materials that are difficult to weld by conventional 

welding processes, such as 2000 and 7000 series aluminum alloys, and part distortion and residual 

stresses are low. The FSW process is also environmentally friendly since harmful gases are not 

generated during the process. 

 It is often desirable to regulate the forces that are produced in FSW processes since machine 

geometric errors, structural deflections, improper fixturing, changes in thermal boundary 

conditions, etc. can cause poor weld quality, such as internal and surface voids, if constant process 

parameters are utilized. Axial force control is often used to ensure the tool shoulder maintains 

proper contact with the part without digging in too deep and creating surface voids. Also, 

experimental results [1] revealed a relationship between the generation of void defects and the path 

force: when the path force is above a critical value, void defects are generated. This result suggests 

that a feedback path force controller can be designed to eliminate the generation of void defects 

during FSW processes. The normal force has not been associated with defect formation; thus, the 

axial and path forces will be regulated in this paper. 

 Many manufacturing operations may be improved by regulating the process forces (e.g., 
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[2–6]); however, force control has not been extensively investigated in the open literature. Smith 

[7] presented illustrations of robotic FSW with a serial industrial robot IRB 7600 working in a 

force feedback control mode. Strombeck [8] gave welding examples using the parallel industrial 

robot RIFTEC 600 with force feedback control. Cook [9] investigated the relationship between the 

increment in plunge depth and the corresponding increment in the axial force and noted that a force 

controller stability problem could be caused by the transient response characteristics during the 

beginning welding stage. Most current axial force feedback control algorithms in FSW machines 

are proprietary and, to the author’s knowledge, no systematic design techniques are available in the 

literature. 

 The rest of this paper is organized as follows. First, equipment utilized in this study and noise 

filtering are described. Dynamic FSW process models for the axial and path forces and the 

equipment dynamic models are presented. Then, the detailed design procedure of the force 

controllers using the Polynomial Pole Placement method implemented in a Smith 

Predictor–Corrector structure is introduced. Lastly, experimental validation studies are conducted 

and discussed. 

 

Experimental Platform 

The FSW system (Figure 1) used to conduct the experiments in this paper consists of a six degree 

of freedom robot (ABB IRB 940 Tricept robot), a FSW spindle head, a six axis force/moment 

sensor, and an open architecture control system. The robot has three non parallel telescopic 

translational joints and three rotational joints, and is retrofitted with a FSW spindle head to provide 

the rotational tool motion. The FSW spindle head (Figure 2) has a rotational axis driven by a 10 hp 

Exlar SLM115–368 servo motor with a rotational speed range of ±3000 rpm. The load capability 
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of the spindle is 9.0 kN along the tool axis and 4.5 kN in the radial direction. The six–axis 

force/moment sensor system (JR3 Inc. model 75E20S–M125A–A 6000N1150) provides 

measurements of the process loading: the forces in three orthogonal directions and moments about 

each direction. The output analog voltage signal ranges are ±10.0 V. The rated sensor forces are 6 

kN in the x and y–directions and 12 kN in the z–direction. The rated moments are 1,150 N·m about 

all three directions. The teach pendant is used to manually control and program the robot. 

 The IRB 940 Tricept robot uses an S4cPlus robot control unit with RAPID as the 

programming language. The high level language RAPID enables the operator to pre–program the 

processing sequence and control algorithms in simple text formats, upload the source programs to 

the control unit, and compile and execute the code. Figure 3 illustrates the basic structure and 

functional blocks of the program used for the experiments conducted in this paper. The program 

consists of the initialization routines, a main welding loop executing in real–time during the 

welding process, and data storage routines executed after the process is complete. An interrupt 

procedure with an interval of 0.1 sec is triggered to provide a constant frequency of data 

acquisition and process parameter outputs as soon as the main welding loop is entered. During the 

interrupt procedure, the sensor data (i.e., forces and measured process parameters) are collected 

and the output signals (i.e., commanded process parameters) are calculated. These output signals 

are sent to their respective amplifiers during the main welding loop and, after the main loop 

finishes, all collected sensor data are saved to the control unit hard disk. 

 The experimental data contains significant electrical noise. Therefore, a five–point moving 

average was empirically determined to provide good data filtering without significant signal delay 

and unduely taxing the system’s limited computational bandwidth. The filtered force signal is 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 3
5f m m m m mY i Y i Y i Y i Y i Y i= + − + − + − + − 4  (1) 
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where Yf (i) is the filtered force at the ith iteration and Ym (i) is the measured force at the ith iteration. 

After implementing the filter, the standard deviation of the steady state force data with constant 

process parameters decreases approximately 50%. 

 

Process and Equipment Dynamic Modeling 

There has been a substantial amount of work in detailed thermo–mechanical models for FSW 

processes [10–12]. However, these models are solved using finite difference or finite element 

techniques and the computational requirements limit their use for controller design and 

implementation. In this paper, the controller designs are based on empirical dynamic models of the 

FSW process for 6061–T6 aluminum alloy (composition by weight: 97.9% Al, 0.60% Si, 0.30% 

Cu, 1.0% Mg, and 0.20% Cr). Based on the work of Zhao et al. [13], the axial (Fa) and path (Fp) 

forces are developed using the Least Square and Recursive Least Square techniques and can be 

modeled as second and first order systems, respectively, with the plunge depth and tool rotation 

speed, respectively, as the input process parameters. Other factors can be treated as disturbances 

(e.g., fixturing) or are constant during the operation (e.g., material properties, tool geometry, travel 

and work angles). Given a sampling frequency of 10 Hz, the models are converted into the discrete 

time domain with a Zero–Order–Hold transformation and, respectively, are 

 ( ) ( ) ( )
0.0970 0.230

2.21
2 2

0.136 0.108
0.846 5.99 10a

v z
F z d z

z z
ω−

−

−
=

− + ⋅
 (2) 

 ( ) ( )
2 0.999

1.232.20 10
0.854p

vF z z
z

ω
−

−⋅
=

−
 (3) 

where Fa is the axial force, v is the tool traverse rate, ω is the tool rotation speed, d is the plunge 

depth, and Fp is the path force. Note the forces increase as the tool traverse rate increases and as the 

tool rotation speed decreases. Since the force decreases with increasing temperature, this is in 
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agreement with the results in [14] that found temperature increases as the tool traverse rate 

decreases and tool rotation speed increases. 

 Due to the dynamic characteristics of the actuators and the communication delays that exist 

between the processors handling the high and low level computations, a dynamic relationship 

exists between the commanded and measured process parameters. Given the nonlinear 

relationships between the axial force and plunge depth and between the path force and tool rotation 

speed, as shown in equations (2) and (3), respectively, the dynamic relationships between and 

 and between  and  are modeled, where dc is the commanded plunge depth, and ωc 

is the commanded tool rotation speed. Step change experiments for these parameters are conducted 

to determine these relationships. Experimental results show these relationships can be described 

by a pure delay and a first order transient response. Figures 4 and 5 show experimental results for 

the plunge depth and tool rotation speed, respectively, for step changes in the commanded process 

parameters. The number of delay periods is visually observed and the model time constants and 

gains are estimated by the Recursive Least Square method. For each parameter, nine runs are 

conducted and, therefore, 36 transient response data sets are collected. Delay times and time 

constants for the plunge depth and tool rotation speed equipment models are shown in Figures 6 

and 7, respectively. The gains for both models are unity. 

2.21d

2.21
cd 1.23ω− 1.23

cω−

 Taking the average delay times and time constants, the dynamic relationships between the 

commanded and measured plunge depth and tool rotation speed, respectively, are 

 ( )
( )

2.21 0.531

2.21 0.151 1

s

c

d s e
d s s

−

=
+

 (4) 

 ( )
( )

1.23 0.294

1.23 0.114 1

s

c

s e
s s

ω
ω

− −

− =
+

 (5) 
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The standard deviations of the plunge depth and rotation speed delay times are 4.67·10–2 sec and 

6.30·10–2 sec, respectively, and the standard deviations of the plunge depth and tool rotation speed 

time constants are 5.70·10–2 sec and 5.59·10–2 sec, respectively. The smaller standard deviations of 

the plunge depth delay time and time constant indicate that it has a more consistent dynamic 

response as compared to the tool rotation speed. Also, the results show that the tool rotation speed 

has a relatively smaller delay time compared to the plunge depth, which is due to the fact that the 

spindle rotation and the robot’s motions are implemented on two different computational systems. 

Since the welding program operates at a sampling frequency of fs = 10 Hz, the number of delay 

periods can be calculated based on the average equipment model delay time Td and fs as 

. Thus, the plunge depth and tool rotation speed equipment models, respectively, 

in the discrete domain, using a Zero–Order–Hold transformation, are 

round( / )d sn T= f

 ( )
( )

2.21
5

2.21

0.484
0.516c

d z
z

d z z
−=

−
 (6) 

 ( )
( )

1.23
3

1.23

0.587
0.413c

z
z

z z
ω
ω

−
−

− =
−

 (7) 

A series of sinusoidal experiments are conducted to validate the plunge depth and tool rotational 

speed equipment models. The commanded plunge depth and tool rotation speed are 

 and ( )4.318 0.127sin 2c dd fπ= + t ( )1900 300sin 2c f tωω = + π , respectively. The frequencies of 

the sinusoidal experiments are limited by the rate limits imposed on both plunge depth and tool 

rotation speed, which are empirically determined and are 0.2 mm/s and 1000 rpm/s, respectively. 

Therefore, the maximum frequencies for the plunge depth and tool rotation speed sinusoidal 

experiments, are 0.251 Hz and 0.531 Hz, respectively. Four frequencies for each parameter are 

selected within these ranges. The model Bode Diagrams and the measured magnitude ratios and 
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phase shifts are shown in Figures 8 and 9, respectively, for the plunge depth and tool rotation speed 

equipment dynamics. 

 The Bode Diagrams indicate the models fit the experimental results very well. The maximum 

differences between the plunge depth modeled and measured magnitudes and phase shifts are 

0.145 dB and –8.70°, respectively. The maximum differences between the tool rotation speed 

modeled and measured magnitudes and phase shifts are 0.403 dB and 12.0°, respectively. The 

differences are due to the fact that the delay times in the discrete time models are rounded to 

integers based on the sampling rate, which is either smaller (for the plunge depth equipment model) 

or larger (for the tool rotation speed equipment model) as compared to the average delay times. 

 It should be noted that the equipment and process models are empirical. The equipment model 

is machine dependent and the process model depends on the specific tool material and geometry, 

fixturing conditions, and material type. To apply the force control methodology proposed in this 

paper on another machine and for another process, new equipment and process models would need 

to be developed. 

 

Controller Design 

In this section feedback controllers utilizing the Polynomial Pole Placement (PPP) technique are 

designed to regulate the axial and path forces at constant values. The controllers are implemented 

in a Smith Predictor–Corrector (SPC) structure to compensate for the inherent equipment 

communication delay. The two controllers have the same closed loop system block diagram, as 

shown in Figure 10. The parameter Fr is the reference force, F is the measured force, E is the error 

between the reference and measured forces, U is the control signal, C is the controller transfer 

function, G is the model force process transfer function, and n is the number of equipment delay 
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periods. 

 Since the sampling rate is fs = 10 Hz, the operating bandwidth is 0–5 Hz The design procedure 

consists of the following steps: 

1. Calculate process model’s zeros and poles. 

2. Select closed loop system poles based on results of Step 1. 

3. Calculate controller transfer function using the PPP technique with Internal Model 

Principle (IMP) based on closed loop poles selected in Step 2. 

4. Evaluate closed loop system’s stability and robustness within operating bandwidth using 

stability margins and sensitivity function. 

The above design procedure is iterative, and Steps 2–4 may need to be repeated according to the 

stability and robustness results and experimental investigations. Detailed design steps are 

discussed in the following sections for the axial and path force controller designs. 

 

Axial Force Controller 

The plant dynamic model is a combination of the axial force process and equipment dynamic 

models, given in equations (2) and (6), respectively, and is 

 ( ) ( ) 5
0G z G z z−=  (8) 

where 

 ( ) ( )
( )

( )0.0970 0.230 2 2

3 2 2

6.21 10 4.97 10
1.42 0.566 5.18 10

v zb z
G z

a z z z z
ω− −

−

⋅ − ⋅
= =

− + + ⋅

−

 (9) 

In the initial controller design, the inherent equipment communication delay is ignored and 

 ( ) ( )
( )

p z
C z

q z
=  (10) 
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The closed loop transfer function is 

 ( )
( )

( ) ( )
( ) ( ) ( ) ( )r

F z p z b z
F z q z a z p z b z

=
+

 (11) 

The desired closed loop characteristic polynomial is α(z); therefore, the following equation must 

hold 

 ( ) ( ) ( ) ( ) ( )q z a z p z b z zα+ =  (12) 

Given the plant transfer function in equation (9) and a specified closed loop characteristic 

polynomial, the coefficients of p(z) and q(z) can be determined by equating like coefficients in 

equation (12). 

 

Plant Transfer Function Zeros and Poles 

As shown in equation (9), G(z) has one zero located at 8.01·10–2 and three poles located at 0.516, 

0.772, and 0.130. The first pole corresponds to a time constant of 0.151 sec and is due to the 

equipment dynamics. The second and third poles correspond to two first order responses with time 

constants of 0.387 and 4.90·10–2 sec, respectively, and are due to the axial force process dynamics. 

 

Closed Loop Pole Locations 

The closed loop characteristic polynomial is 6th order. The initial choice for this polynomial is 

 ( ) ( )( ) ( )1 2z z r z r R zα = − −  (13) 

where r1 and r2 are two dominant poles, and R(z) is a 4th order polynomial. Since the plant transfer 

function has three poles with different time constants, the polynomial R(z) is manipulated to 

contain two poles at the origin and two poles that are identical to the two poles of G(z) with the 

smallest time constants 
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 ( ) ( )( )2 0.516 0.130R z z z z= − −  (14) 

Substituting equations (13) and (14) into equation (12) 

 
( ) ( ) ( )( )( )( )

( )( )( )( )

2
1 2 0.516 0.130

0.772 0.516 0.130

p z b z z z r z r z z

q z z z z

= − − − −

− − − −
 (15) 

Substituting equation (15) into equation (11) 

 ( )
( )

( )( ) ( )( )
( )( )

2
1 2

2
1 2

0.772

r

F z z z r z r q z z
F z z z r z r

− − − −
=

− −
 (16) 

Equation (16) shows that by manipulating the pole locations of α(z), the order of the closed loop 

characteristic polynomial is reduced from 6 to 4. Another pole placement strategy is for α(z) to 

have one dominant pole and for R(z) to contain the three poles of the plant transfer function, with 

the fourth pole located at the origin. However, an analysis revealed that the closed loop system 

based on this pole placement strategy had poor stability and robustness and, therefore, was not 

pursued. Generally the rise time of the closed loop system should have at least 4–10 sampling 

periods to maintain closed loop stability [15]. Since the sampling period is 0.1 sec, r1 and r2 are 

initially chosen as 0.936 and 0.819, respectively, which correspond to time constants of 1.5 sec and 

0.5 sec, respectively. The parameter r1 is tuned experimentally by decreasing its value, without 

inducing instability and r2 is tuned to the value that minimizes the sensitivity of the closed loop 

system, as discussed in the following section. The final design values are r1 = 0.9131 and r2 = 

0.7386, which correspond to time constants of 1.1 sec and 0.33 sec, respectively. Substituting r1, r2, 

and equation (14) into equation (13), the closed loop characteristic polynomial is 

  (17) ( ) 6 5 4 32.30 1.81 0.546 4.53 10z z z z z zα −= − + − + ⋅ 2 2

For the experiments conducted in this paper, the reference force is constant; therefore, the 

denominator of the controller transfer function must contain the factor z–1 to ensure robust 
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tracking. Denoting q(z) = q2(z)(z–1) to ensure the controller has integral action to track constant 

references and reject constant disturbances, equation (12) is transformed into 

 ( )( )( ) ( )( )3 2 2 2 2 0.0970 0.230
2

6 5 4 3 2 2

1 1.42 0.566 5.18 10 6.21 10 4.50 10

2.30 1.81 0.546 4.53 10

q z z z z z p z z v

z z z z z

ω− − −

−

− − + + ⋅ + ⋅ − ⋅

= − + − + ⋅

−

(18) 

Given that the system order is 3, for a proper controller to exist such that equation (18) is satisfied, 

the minimal orders of p(z) and q2(z) are, respectively, 3 and 2. The controller coefficients are 

calculated by equating like coefficients of equation (18), and the controller transfer function is 

 ( ) ( )
( )

( )3 2 2 2 0.0970 0.230

3 2 2 2

1.18 9.33 10 0.351 4.47 10
0.880 7.77 10 4.29 10

z z z vp z
C z

q z z z z
ω− −

− −

− ⋅ − + ⋅
= =

− − ⋅ − ⋅

−

 (19) 

Note that the numerator is an explicit function of v and ω and, therefore, the controller inherently 

compensates for variations in the tool traverse rate and tool rotation speed. 

 

Closed Loop System Stability and Robustness 

Since the plant model contains modeling inaccuracies, the sensitivity function and the stability 

margins are checked during the design procedure to ensure the closed loop system has sufficient 

stability and robustness. For the closed loop system not implemented in the SPC structure, the 

sensitivity function is 

 ( ) ( ) ( )
1

1
S z

C z G z
=

+
 (20) 

The sensitivity function can be interpreted as the ratio of the change in the closed loop transfer 

function to the change in the open loop transfer function [16] 

 ( ) ( )cl

cl

d H d H
S

H H
=  (21) 

where H(z) = C(z)G(z) is the open loop transfer function and Hcl(z) = H(z)(1 + H(z))–1 is the closed 
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loop transfer function. The sensitivity function S(z) is used as a measure of the closed loop system 

sensitivity to noise, external disturbances, and modeling errors. Substituting z = eifT, where T is the 

sampling period, i is the imaginary number, and f is the frequency, into equation (20) yields 

 ( ) ( ) ( )
1

1
ifT

ifT ifT
S e

C e G e
=

+
 (22) 

The inverse of ( )ifTS e  is ( ) ( )1 ifT ifTC e G e+ , which represents the distance from a point of the 

Nyquist curve of the open loop transfer function ( ) ( )ifT ifTC e G e  to the critical point –1. To have 

good robustness and maintain stability against modeling errors, ( ) 2ifTS e <  [15]. The value of 

( )ifTS e  for 0 < f < 5 Hz is plotted in Figure 11. The maximum value of the sensitivity function is 

1.18; thus, the desired closed loop system meets the sensitivity requirement. 

 The gain and phase margins, respectively, are 

 ( )10 120logmG H iω=  (23) 

 ( )2mP H iω= ∠  (24) 

where ω1 is the phase crossover frequency where the phase is –180° and ω2 is the magnitude 

crossover frequency where the magnitude of H is 1. The closed loop system is stable only if Gm > 0 

and Pm > 0. Generally, Gm > 6 dB and Pm > 30° for the closed loop system to have sufficient 

robustness against modeling errors [17]. Figure 12 shows the Bode Diagram, including the 

magnitude and phase margins, which are 19.4 dB and 84.4°, respectively, and meet the stability 

margin requirements. 

 

Implementation in Smith Predictor–Corrector Structure 

The next step of the controller design is to implement the controller in a Smith Predictor–Corrector 
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(SPC) structure. The overall closed loop system diagram is shown in Figure 10 where n = 5 is the 

number of the equipment delay periods. The modified control law is 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

0.0970 0.230 2 0.0970 0.230
1 1

0.0970 0.230 2 0.0970 0.230
1 1

0.879 1 7.77 10 2 4.29 10 3

1.18 9.33 10 1 1

0.351 2 2 4.47 10 3 3

u k u k u k u k

v e k e k v e k e k

v e k e k v e k e k

ω ω

ω ω

− −

− − −

− − −

= − + ⋅ − + ⋅ −

+ − − ⋅ − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− − − − + ⋅ − −⎡ ⎤ ⎡⎣ ⎦ ⎣ − ⎤⎦

 (25) 

where 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1 1

2 0.0970 0.230 2 0.0970 0.230

1.42 1 0.566 2 5.18 10 3

6.21 10 2 7 4.97 10 3 8

e k e k e k e k

v u k u k v u k u kω ω

−

− − − −

= − − − + ⋅ −

+ ⋅ − − − − ⋅ − − −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦
 (26) 

and  is the control signal. The commanded plunge depth is determined using the 

nonlinear mapping 

( ) ( )2.21
cu k d k=

( ) (2.21
cd k u k−= ) . Due to the load capacity of the FSW robot and the 

possibility of tool breakage, control signal saturation is required for both the plunge depth and the 

rate of change of the plunge depth. The tool geometry restricts the range of the plunge depth: the 

tool shoulder must maintain contact with the plate’s surface to ensure proper forging action and a 

plunge depth that is too deep generates excessive material flow away from the welding surface, 

creating surface voids. Since the pin length is 4.165 mm, the plunge depth is chosen to be in the 

range of 4.17 to 4.60 mm. Also, a rate limit of 0.20 mm/s is applied based upon the operator's 

experience. Magnitude and rate signal saturations are implemented within the controller program. 

 

Path Force 

The path force controller is also designed using the PPP technique with the application of the IMP. 

The plant transfer function G0(z), incorporating the path force process and rotational speed models, 

is 

 ( ) ( ) 3
0G z G z z−=  (27) 
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where 

 ( ) ( )
( )

2 0.999

2

1.29 10
1.27 0.353

b z vG z
a z z z

−⋅
= =

− +
 (28) 

The poles are located at 0.854 and 0.413. The first pole is due to the path force process model 

dynamics and the second pole is due to the equipment model dynamics. The operating bandwidth 

is again 5 Hz. 

 The order of the path force dynamic model is 2; therefore, the order of the closed loop 

characteristic polynomial is 4. Similar to the axial force controller design, the closed loop 

characteristic polynomial is manipulated to contain the factors of a(z) so that the order of the 

closed loop transfer function is reduced. An initial design of α(z) is 

 ( ) ( )( )( )0 1 2z z r z r z rα = − − − z

z

 (29) 

where r0 is the dominant pole and r1 and r2 are identical to the plant transfer function poles. The 

time constant of the dominant pole is set to 1.2 sec, based on experimental results, so that the 

closed loop system response is fast and the system still has sufficient stability and robustness. 

Therefore, r0 = 0.926. Substituting r0, r1, and r2 into equation (29) 

  (30) ( ) 4 3 22.19 1.52 0.324z z z zα = − + −

The controller transfer function is 

 ( ) ( )
( )

( )2 0

2

6.19 7.84 2.18
0.920 8.00 10

z z vp z
C z

q z z z

−

−

− +
= =

− − ⋅

.999

2  (31) 

The controller is an explicit function of v and, therefore, inherently compensates for variations in 

the tool traverse rate. The closed loop design is also evaluated by computing the sensitivity 

function and stability margins. Figure 11 shows the value of sensitivity function in the range of 0 < 

f < 5 Hz, and the maximum value is 1.10. Figure 12 shows the Bode Diagram, including the 
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stability margins. The magnitude and phase margins are 22.6 dB and 83.9°, respectively. Therefore, 

the requirements for both sensitivity and stability margins are satisfied. 

 Similar to the axial force controller design, the path force controller is implemented in a Smith 

Predictor–Corrector structure and the control law is 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 0.999
1

0.999 0.999
1 1

0.920 1 8.00 10 2 6.19

7.84 1 1 2.18 2 2

u k u k u k v e k e k

v e k e k v e k e k

− −

− −

= − + ⋅ − + −⎡ ⎤⎣ ⎦
− − − − + − − −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦

 (32) 

where 

 ( ) ( ) ( ) ( ) ( )0.999
1 1 11.27 1 0.355 2 1.29 2 5e k e k e k v u k u k= − − − + − − −⎡ ⎤⎣ ⎦  (33) 

and  is the control signal. The commanded tool rotation speed is determined 

using the nonlinear mapping 

( ) ( )1.23
cu k kω−=

( ) ( )1.23
c k u kω = . 

 

 

Experimental Validation 

In this section, lap welding experiments are conducted to validate the performances of the axial 

and path force controllers. Figure 13 shows the lap welding experimental setup. 

 

Axial Force 

In the first set of axial force controller validation experiments, the tool traverse rate and tool 

rotation speed are constant and the reference axial force is changed twice in a step–wise manner 

during the experiment. The reference force is Fr1 for the first third of the welding distance, Fr2 for 

the second third, and Fr3 for the last third. Five experimental tests with different combinations of 

tool traverse rate and tool rotation speed are conducted to validate the controller’s performance. 

Given the specific tool traverse rate, tool rotation speed, and the pre–selected plunge depth range, 
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the reference force values are adjusted according to experimental results so that the tool shoulder 

maintains proper contact with the plate surface and good weld quality is obtained (i.e., surface 

voids are not created). Table 1 shows the process parameter combinations and reference axial 

forces for the five experiments. 

 Figure 14 shows the experimental results for the third test and Table 1 gives the averages and 

standard deviations of the axial forces during the three steady–state portions of each test. The 

measured axial forces tracked the reference axial forces well for each experiment. The standard 

deviations are below 1% of the averages’ magnitudes, except for the second steady–state of the 

fourth test, where the large tracking error is caused by a sudden disturbance, which could be 

caused by material defects, fixturing issues, etc. It is also observed that during the steady states 

where the axial forces are constant, the plunge depth has significant variations. These variations 

are mainly due to the machine’s geometric error. Other factors that contribute to these variations 

are the non–uniformity in the plate’s flatness and material properties, structural deflections, 

non–uniformity in the fixturing, and changes in the thermal boundary conditions as the tool travels 

from one end of the plate to the other. The controller is able to compensate for these effects and 

maintain a constant axial force. 

 The next set of experiments explores the effects skin–to–skin and substructure gaps have on 

the axial force controller. A four–piece experimental setup, illustrated in Figure 15, is utilized for 

these experiments and two plates, separated by shims of constant thickness, are placed on the top, 

forming a skin–to–skin gap. Two plates, also separated by shims with the same thickness, are 

placed on the bottom, forming a substructure gap. The welding start and end locations are selected 

such that the welding path goes across both gaps. Two groups of experiments are conducted to 

analyze the force controller performance: tests 1–6 utilize axial force control for different 
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combinations of tool traverse rate and tool rotation speed and tests 7–12 utilize constant plunge 

depth for the corresponding combinations of tool traverse rate and tool rotation speed. The 

reference axial force for each test was selected, based on experimental investigations, such that the 

tool shoulder maintained contact with the plate surface and surface voids were not created. The 

plunge depth for each run in the second group was computed from the axial force model, given the 

combination of reference force, tool traverse rate, and tool rotation speed. 

 Figure 16 shows the experimental results for tests 4 (axial force control) and 10 (constant 

plunge depth). In this figure, the top and middle subplots show the axial force control results, and 

the bottom subplot shows the corresponding constant plunge depth results. On each subplot, the 

three dotted lines on the left side of the figure indicate the times when the sides and center of the 

tool shoulder engage and leave the substructure gap, and the three dotted lines on the right side of 

the figure indicate when the sides and center of the tool shoulder engage and leave the 

skin–to–skin gap. It is observed that when the force controller is implemented, a constant axial 

force is maintained at the reference value during the welding process even when skin–to–skin and 

substructure gaps are encountered. When the plunge depth was constant, the axial force decreases 

when crossing both skin–to–skin and substructure gaps. This is due the fact that the tool 

encounters less material as it crosses the gaps and thus, less axial force is applied to the tool. 

 The average axial forces and standard deviations for the two groups of experiments are shown 

in Table 2. It is observed that for the tests with a lower tool traverse rate the difference between the 

axial force standard deviations of experiments with axial force control and experiments with 

constant plunge depth are larger as compared to those with a higher tool traverse rate. One 

explanation is that when the tool traverse rate is lower, the time period for the tool to travel across 

the gap is longer, which causes a greater decrease in axial force and, therefore, the improvement 
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provided by implementing the controller is greater. The axial force control experiments have much 

better performance as compared to the corresponding constant plunge depth experiments. It is 

observed that the measured axial force has greater variation from the desired axial force when the 

plunge depth is constant. This is due to the existence of gaps, variations in the thermal boundary 

and fixturing conditions, and axial force modeling errors. 

 The third set of axial force validation experiments is designed to test the controller’s 

performance when welding along skin–to–skin gaps. Figure 17 shows the experimental setup. 

Four gap sizes are investigated: constant gap of 0.381 mm, constant gap of 0.762 mm, tapered gap 

that increases linearly from 0.381 mm to 0.762 mm, and no gap. The process parameters are 

identical to test #3 in Table 1 where the controller has the best performance, the weld quality from 

visual inspection is very good, and the reference axial force is 3.00 kN. Figure 18 shows the 

experimental results when a variable gap is encountered, and Table 3 gives the axial force averages 

and standard deviations during the three steady state portions of each test. The results show that the 

axial force controller also works well when welding along a gap, and the axial force is not 

significantly affected by the existence of gaps up to 0.762 mm in width. The tracking precision is 

similar to the experiments where no gaps are present and the experiments where the tool crosses 

skin–to–skin and substructure gaps. 

 

Path Force 

In the first set of path force controller validation experiments, the controller is implemented to 

track constant reference path forces and the plunge depth and tool traverse rate are constant. 

According to the path force model, the plunge depth does not affect the force significantly; 

therefore, a plunge depth of 4.20 mm is selected, based upon experimental observations, to ensure 
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the tool shoulder maintains contact with the plate and surface voids are not created during the 

welding process. Three experiments are conducted with different traverse rates and reference force 

levels such that the shoulder maintains contact with the plate and good weld quality is obtained 

(i.e., surface voids are not created). The reference path force changes from the high (Fr1) to the low 

(Fr2) value in a step–wise manner in the middle of the weld. Figure 19 shows the experimental 

results for the second test and Table 4 shows the process parameters and the path force averages 

and standard deviations during the two steady–state portions for each test. The results show the 

controller tracks the reference path force well for all three tests. However, compared to the axial 

force controller experiments, the path force has greater variation. At least two factors contribute to 

this phenomenon: 1) the path force has a much lower magnitude (0.1–0.4 kN) than the axial force 

(2.5–3.5 kN) and, therefore, the signal to noise ratio is much less and 2) the path force dynamic 

model is less accurate as compared to the axial force dynamic model [13]. 

 The second set of path force validation experiments is designed to examine the controller’s 

performance when welding along skin–to–skin gaps. The experimental setup is shown in Figure 

17. Four gap sizes are examined: a constant gap of 0.381 mm, a constant gap of 0.762 mm, a 

tapered gap increasing linearly from 0.381 to 0.762 mm, and no gap. The reference path force 

experiences a step–wise change from Fr1 to Fr2 in the middle of the weld. A constant traverse rate 

of 3.2 mm/s, for which the path force has the smallest standard deviation when tracking the lowest 

force, is applied for all three experiments. Due to the gap, a constant plunge depth of 4.25 mm, 0.05 

mm deeper as compared to the experiments without gaps, is applied to obtain the same path force 

level. Figure 20 shows the experimental results for test 3 and Table 5 shows the tracking 

performance for each test. The results show that the steady–state averages and standard deviations 

are similar to those obtained in test 3 of the first set of experiments, which has the same traverse 
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rate and reference force. This indicates the path force controller also works well when welding 

along skin–to–skin gaps and the path force is not significantly affected by the presence of these 

types of gaps. 

 The third set of experiments is designed to demonstrate the ability of the path force controller 

to eliminate the generation of wormholes during the welding process. In this experiment, the 

plunge depth and traverse rate are 4.20 mm and 3.20 mm/s, respectively, and the initial tool rotation 

speed is 900 rpm. During the first 20 seconds, the controller is not implemented and after 20 

seconds, the controller is activated to regulate the path force at a reference value of 0.22 kN. The 

reference path force is selected so a good weld will be obtained without wormholes or the creation 

of surface voids. The experimental results are shown in Figure 21. It is observed that the 

implementation of the controller maintained the path force at a constant value. In the steady state 

with force control (5.0–20.0 sec), the average value of path force is 0.215 kN and the standard 

deviation is 7.95·10–3 kN. Figure 22 shows pictures of the weld cross–sections during the 

steady–states both with path force control (26.5–48.0 sec) and with constant tool rotation speed 

(20.0–48.0 sec). It is observed that with the implementation of the path force controller, void 

defects, as shown in subplot (b), are eliminated, as shown in subplot (a). 

 

Summary and Conclusions 

Model–based, nonlinear axial and path force controllers were designed using the Polynomial Pole 

Placement technique with the Internal Model Principle for friction stir welding processes. The 

models consisted of equipment models, which were developed in this paper, and process models, 

that were taken from the literature. The controllers were implemented in a Smith 

Predictor–Corrector structure to compensate for inherent equipment communication delays. A 
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detailed design procedure was introduced and several experiments were conducted to validate the 

controllers’ performance. 

 Experimental results validated the developed equipment models. The axial force controller 

was experimentally shown to perform well when tracking a constant axial force, even when gaps 

were encountered across and along the weld path. The path force controller was also 

experimentally shown to be able to track a constant path, even when gaps were encountered along 

the weld path. However, the tracking precision is relatively lower for the path force controller, as 

compared to the axial force controller, due to the smaller signal to noise ratio and modeling 

inaccuracies that exist in the path force model. One experiment showed that the wormhole defect 

during the welding process can be eliminated by the implementation of the path force controller. 
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Table 1: Axial Force Controller Tracking Performance during Steady–State. F1ss, F2ss, and 

F3ss are Steady–State Axial Forces for First, Second, and Third, respectively, Sections. 

Test v 
(mm/s) ω (rpm) F1ss [Fr1] 

(kN) 
σ(F1) 
(kN) 

F2ss [Fr2] 
(kN) 

σ(F2) 
(kN) 

F3ss [Fr3] 
(kN) 

σ(F3) 
(kN) 

1 3.2 1600 3.46 [3.45] 2.75·10–2 3.65 [3.65] 1.10·10–2 3.54 [3.55] 2.76·10–2

2 3.2 2100 3.27 [3.25] 1.76·10–2 3.46 [3.45] 1.84·10–2 3.34 [3.35] 2.01·10–2

3 2.0 1600 3.01 [3.00] 9.10·10–3 3.21 [3.20] 1.13·10–2 3.11 [3.10] 1.36·10–2

4 2.0 2100 2.71 [2.70] 2.15·10–2 2.90 [2.90] 3.87·10–2 2.80 [2.80] 1.63·10–2

5 2.6 1900 2.92 [2.90] 2.17·10–2 3.11 [3.10] 1.33·10–2 3.00 [3.00] 1.77·10–2

 

Table 2: Tracking Performance for Axial Force Controller and Constant Plunge Depth when 
Welding across Gaps. Fss is Steady–State Axial Force. 

   Constant Axial Force Constant Plunge Depth 
v (mm/s) ω (rpm) Fr (kN) Test Fss (kN) σ(F1) (kN) Test Fss (kN) σ(F2) (kN) 

3.2 1600 3.40 1 3.41 3.40·10–2 7 3.37 4.46·10–2 
3.2 2100 3.30 2 3.31 3.92·10–2 8 3.55 6.73·10–2 
2.0 1600 3.15 3 3.16 2.90·10–2 9 3.41 6.06·10–2 
2.0 2100 2.95 4 2.95 2.18·10–2 10 3.18 7.89·10–2 
2.6 1900 3.25 5 3.25 3.89·10–2 11 3.12 5.14·10–2 
3.2 2100 3.30 6 3.31 1.69·10–2 12 3.19 6.85·10–2 

 

Table 3: Tracking Performance for Axial Force Controller when Welding along Gaps (v = 2.0 
mm/s, ω = 1600 rpm, and Fr = 3.00 kN). Fss is Steady–State Axial Force. 

Test g (mm) Fss (kN) σ(F) (kN) 
1 0.381 3.01 1.54·10–2 
2 0.762 3.00 1.55·10–2 
3 0.381→0.762 3.01 1.70·10–2 
4 0 3.00 2.25·10–2 

 

Table 4: Path Force Controller Tracking Performance during Steady–State (d = 4.20 mm). 
F1ss and F2ss are Steady–State Path Forces for First and Second, respectively, Sections. 
Test v (mm/s) Fr1 (kN) Fr1ss (kN) σ(F1) (kN) Fr2 (kN) Fr2ss (kN) σ(F2) (kN) 

1 2.0 0.16 0.159 1.29·10–2 0.13 0.131 0.727·10–2 
2 2.6 0.19 0.191 1.18·10–2 0.16 0.162 0.601·10–2 
3 3.2 0.23 0.236 1.34·10–2 0.20 0.202 0.592·10–2 
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Table 5: Tracking Performance of Path Force Controller when Welding along Gaps (d = 4.25 
mm and v = 3.2 mm/s). F1ss and F2ss are Steady–State Path Forces for First and Second, 
respectively, Sections. 
Test g (mm) Fr1 (kN) F1ss (kN) σ(F1) (kN) Fr2 (kN) F2ss (kN) σ(F2) (kN) 

1 0.381 0.23 0.232 7.37·10-3 0.20 0.200 8.38·10-3 
2 0.762 0.23 0.228 8.36·10-3 0.20 0.201 6.44·10-3 
3 0.381→0.762 0.23 0.237 1.06·10-2 0.20 0.204 6.36·10-3 
4 0 0.23 0.230 8.61·10-3 0.20 0.202 6.63·10-3 

 

 

Figure 1: Friction Stir Welding System. 

 

Figure 2: FSW Head with Tool and Six–Axis Force/Moment Sensor. 
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Figure 3: Robotic Friction Stir Welding Force Control Program Functional Block Structure. 
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Figure 4: Commanded and Measured Plunge Depth Responses. 
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Figure 5: Commanded and Measured Tool Rotation Speed Responses. 
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Figure 6: Plunge Depth Equipment Model Delays and Time Constants. 
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Figure 7: Tool Rotation Speed Equipment Model Delays and Time Constants. 
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Figure 8: Plunge Depth Equipment Modeled and Measured Bode Diagrams. 
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Figure 9: Tool Rotation Speed Equipment Modeled and Measured Bode Diagrams. 
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Figure 10: Closed Loop Force Control System Block Diagram. 
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Figure 11: Axial and Path Force Closed Loop System Sensitivity Functions. 
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Figure 12: Axial Force Control System Bode Diagrams and Stability Margins (Ga = 19.4 dB 

and Pa = 84.4°) and Path Force Control System Bode Diagrams and Stability Margins (Gp = 

22.6 dB and Pp = 83.9°). 
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Figure 13: Lap Welding Experimental Setup. 
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Figure 14: Experimental Results for Step Changes in Reference Axial Force (v = 2.0 mm/s 

and ω = 1600 rpm). 
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Figure 15: Four–Piece Lap Welding Experimental Setup with Substructure and 

Skin–to–Skin Gaps. 
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Figure 16: Four–Piece Experimental Results for Axial Force Control (test #4, top and middle 

subplots) and Constant Plunge Depth (test #10, bottom subplot, d = 4.20 mm): Fr = 2.95 kN, v 

= 2.0 mm/s, ω = 2100 rpm, and g = 0.381 mm. 
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Figure 17: Experimental Setup for Welding Experiments along a Gap. 
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Figure 18: Axial Force and Plunge Depth when Welding along a Gap with Implementation 

of Axial Force Controller (v = 2.0 mm/s, ω = 1600 rpm, Fr = 3.00 kN, and tapered gap, g = 

0.381→0.762 mm). 
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Figure 19: Path Force and Tool Rotation Speed for Path Force Controller (d = 4.20 mm and v 

= 2.6 mm/s). 
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Figure 20: Path Force and Tool Rotation Speed when Welding along a Gap with 

Implementation of Path Force Controller (d = 4.25 mm, v = 3.2 mm/s, and tapered gap, g = 

0.381→0.762 mm). 
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Figure 21: Path Force before and after Path Controller Implementation (v = 3.2 mm/s, d = 

4.20 mm, and Fr = 0.22 kN). 

 

 

Figure 22: Nugget Cross Sections (a) with Path Force Control (d = 4.20 mm, v = 3.2 mm/s, 

and Fr = 0.22 kN) and (b) without Path Force Control (d = 4.20 mm, v = 3.2 mm/s, and ω = 

900 rpm). 




